STATE OF THE RIVER REPORT 2011 FOR THE LOWER ST. JOHNS RIVER BASIN:

WATER QUALITY, FISHERIES, AQUATIC LIFE, and CONTAMINANTS

Jacksonville University

University of North Florida

Radha Pyati, Ph.D. (UNF)
Daniel A. McCarthy, Ph.D (JU)

Origins of the State of the River Report

Purpose

• to inform the public about health of the Lower St. Johns River Basin, Florida (LSJRB).

Funding

- Environmental Protection Board (EPB) of City of Jacksonville
- Jacksonville City Council
- River Branch Foundation

History

• 2011 marks the fourth year of the State of the River Report.

Topical Coverage of the Report

- The report describes the health of the Lower St. Johns River Basin based on a number of broad indicators.
 - 1. WATER QUALITY
 - 2. FISHERIES
 - 3. AQUATIC LIFE
 - 4. CONTAMINANTS
- How each indicator contributes to, or signals, overall river health is discussed in terms of its current status in 2011 and trends over time.

Four Components of the Report

Full Report (with new Glossary)

Appendix

Website http://www.SJRreport.com

Brochure released in August 2011

Members of the Team

Daniel McCarthy, Ph. D.

Co-Principal Investigator
Fisheries & Macroinvertebrates

Lucy Sonnenberg, Ph.D.

Contaminants

Gerry Pinto, Ph.D.

Submerged aquatic vegetation & Threatened & endangered species

Heather McCarthy, M.E.M.

Background, Wetlands, Exotic Species & Brochure

Quinton White, Ph.D.

Editing & Logistics (pro bono)

Radha Pyati, Ph.D.

Co-Principal Investigator Background & Bacteria

Pat Welsh, Ph. D.

Turbidity, Algal Blooms & Bacteria

<u>Gretchen Bielmyer , Ph.D.</u>

Dissolved Oxygen & Nutrients

Stuart Chalk, Ph.D.

Website, Data management & analysis

April Moore

Document formatting

Ray Bowman, Ph.D.

Editing & Logistics (pro bono)

External Reviewers

City of Jacksonville

Vince Seibold

Dana Morton

Christi Veleta

Kristen Beach

FDEP

Donald Axelrad

Barbara Donner

Lee Banks

Patrick O'Connor

FWRI

Ted Lange

Douglas Adams

Russ Brodie

Justin Solomon

Florida Sea grant

Maia McGuire

FDOH

Kendra Goff

JEA

Paul Steinbrecher

Middlebrook Company

Mark Middlebrook

Maria Mark

SJRWMD

Dean Campbell

Charles Jacoby

John Hendrickson

John Higman

Dean Dobberfuhl

Teresa Monson

National Park Service

Richard

Bryant

St. Johns Riverkeeper

Neil

Armingeon

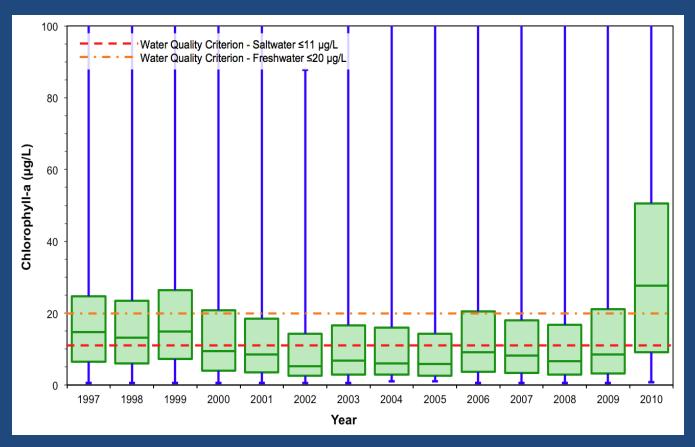
The Nature Conservancy Mike McManus UNF

Stephan Nix

Kelly Smith

Dale Casamatta

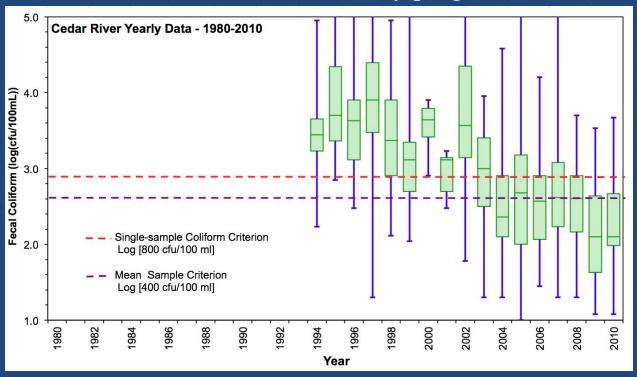
Wildwood Consulting


Tiffany Busby

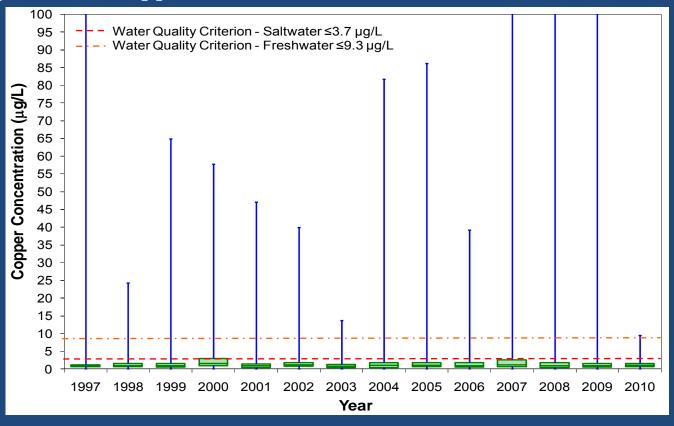
Marcy Policastro

Turbidity	Main Stem: Satisfactory Tributaries: Unsatisfactory	Conditions improving
Algal Blooms	Unsatisfactory	Conditions worsening
Fecal Coliform	Main Stem: Satisfactory Tributaries: Unsatisfactory	Conditions improving
Nutrients (nitrogen and phosphorus)	Unsatisfactory	Conditions stable
Dissolved Oxygen	Unsatisfactory	Conditions stable
Metals	Unsatisfactory	Conditions improving

Algal Blooms


Chlorophyll a concentrations versus Year

• In 2010, exceeded standards for impairment.


Fecal Coliform

- •New this year: analysis of fecal coliform in six selected tributaries
 - Data from COJ Tributary Monitoring Program
 - Tributaries analyzed include: Big Pottsburg Creek, Cedar River, Durbin Creek, Greenfield Creek, Ortega River and Trout River
- •Example below: Cedar River.
 - Has shown most dramatic and steady progress.

Metals

- Metal concentrations have decreased in the water column over the last three years, and most values were at or below WQC in 2010.
- •Example below: Copper.

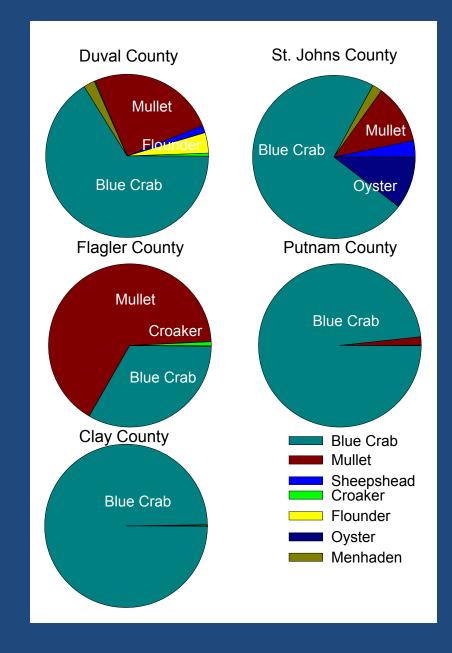
Tributaries of the Lower St. Johns River

- Added three new tributaries to Report: Big Fishweir Creek, Greenfield Creek, and Open Creek
- More detail on the river
- Make the report more personal
- Highlight the variability of the tributaries

Fisheries

Three long-term data sets analyzed (for 12 species)

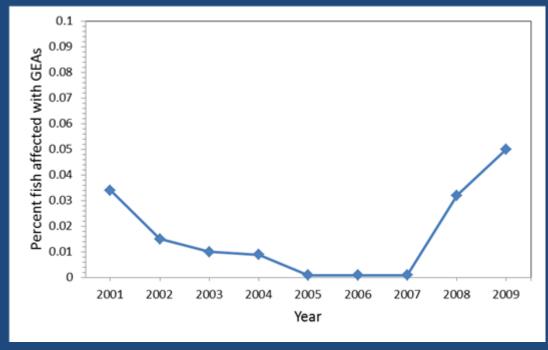
Commercial landings for LSJR counties (FWRI) (1994 – 2009)


Recreational estimates for LSJR counties (NOAA) (1982-2009)

Fisheries Independent Monitoring data (FIMS) from FWRI (2001- 2008)

Commercial Fisheries

Percent comparison of commercially important fish & invertebrates caught during 2010



Gross external abnormalities (GEAs) encountered in fish in the LSJR

The percentage of fish with GEAs has been less than 0.06 % since 2001.

Significant decreases in GEAS since 2001 may be related to changes in sites sampled.



Fisheries Status and Trends

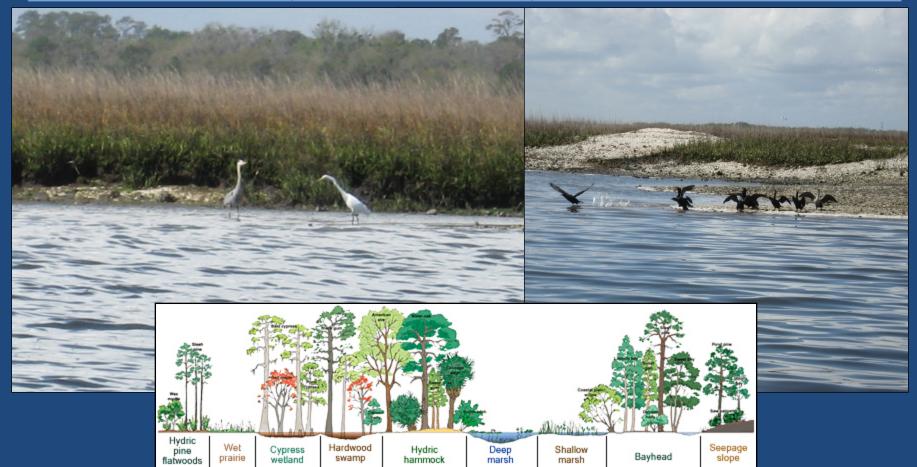
INDICATOR	STATUS	TREND
Red drum	Satisfactory	Stable
Sheepshead	Satisfactory	Stable
Spotted seatrout	Satisfactory	Stable
Largemouth bass	Uncertain	Stable
Freshwater catfish	Uncertain	Conditions Worsening
Striped mullet	Satisfactory	Uncertain
Southern flounder	Uncertain	Uncertain
Stone crab	Satisfactory	Stable
Blue crab	Uncertain	Uncertain
Shrimp	Uncertain	Uncertain

Macroinvertebrates

Dan McCarthy, Ph.D. Jacksonville University

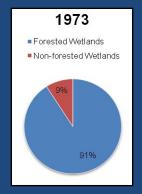
- Animals without a backbone that live on or in the sediment (including crabs, shrimp, bivalves, snails, insects, worms, and barnacles).
- Important part of the food web.
- Affect the aeration and sediment size of river bottom.
- •Can signal river stress and pollution.

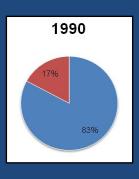
Macroinvertebrates

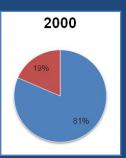

INDICATOR	STATUS	TREND
Macrobenthic Invertebrates	Unsatisfactory	Uncertain

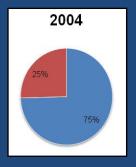
- •Generally degraded in many areas within the LSJRB.
- •May be more pollution-tolerant species at main stem sites within the river that are dominated by fresh versus saltwater.
- •Particularly high environmental stress suggested with species encountered in the Cedar-Ortega River Basin and Julington Creek.

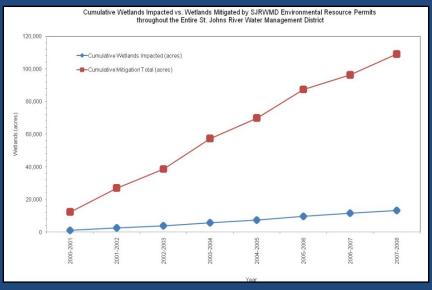
Wetlands

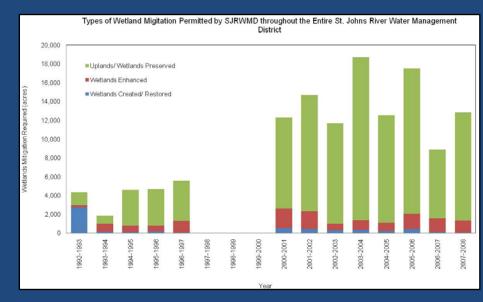

Heather McCarthy, M.E.M. Jacksonville University

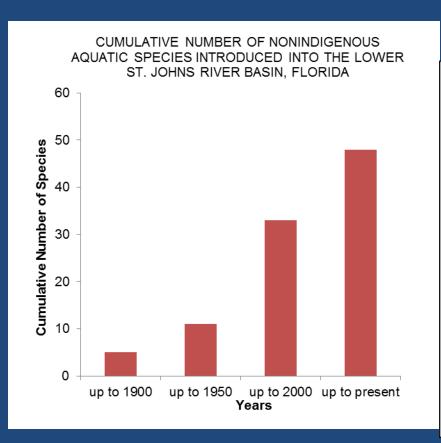

INDICATORSTATUSTRENDWetlandsFlorida: Unsatisfactory
LSJRB: UncertainUncertain

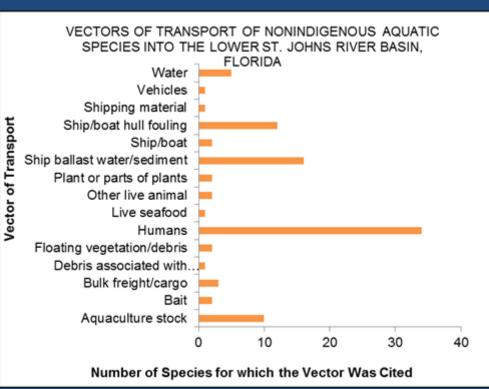

Wetlands


INDICATOR	STATUS	TREND	
Wetlands	Florida: Unsatisfactory	Uncertain	
Wettands	LSJRB: Uncertain		








Non-native Aquatic Species

INDICATOR	STATUS	TREND
Non-native Aquatic Species	Unsatisfactory	Conditions worsening
		Experimental Control of Control o

Non-native Aquatic Species

INDICATOR	STATUS	TREND
Non-native Aquatic	Unsatisfactory	Conditions worsening
Species		Conditions worsening

Submerged Aquatic Vegetation

Gerry Pinto, Ph. D. Jacksonville University

Significance

- Nurseries for many different species
- Food for manatees, fish, invertebrates
- Improves water quality (oxygen, turbidity, nutrient uptake)
- Reduces erosion

Data

- SJRWMD
- Transects in 6 sections of LSJR
- Bed length, % total cover, % tape grass
- Aerial observations 2008-2010

Submerged Aquatic Vegetation

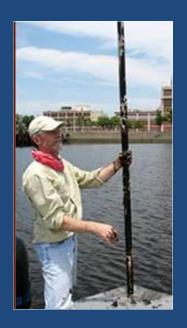
Gerry Pinto, Ph. D. Jacksonville University

INDICATOR	STATUS	TREND
Submerged Aquatic Vegetation	Unsatisfactory	Conditions worsening

- From 2008-2010 there is declining trend in grass parameters north of Buckman Bridge.
- Other areas of the river are highly variable.
- They are highly influenced by light and salinity fluctuations from extreme weather events.
- Continued monitoring and research necessary to discern trends and overall health of beds.

Federally Threatened and Endangered Species Cer

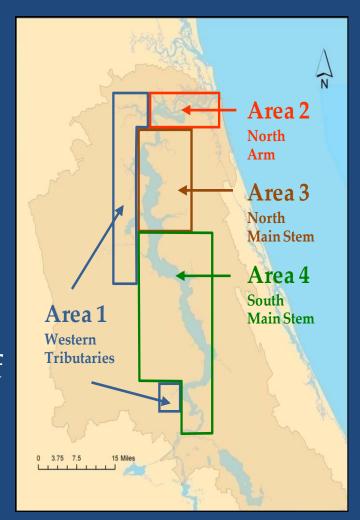
Gerry Pinto, Ph. D. Jacksonville University


INDICATOR	STATUS	TREND	
Federally Threatened and Endangered Species			
Florida manatee	Satisfactory	Atlantic sub-population: stable Blue Springs sub-population: improving	
Bald eagle	Satisfactory	Improving	
Wood storks	Satisfactory	Improving	
Shortnose sturgeon	Satisfactory	Uncertain	
Piping plover	Uncertain	Uncertain	

Sediment Contaminants

Lucinda Sonnenberg, Ph. D. Jacksonville University

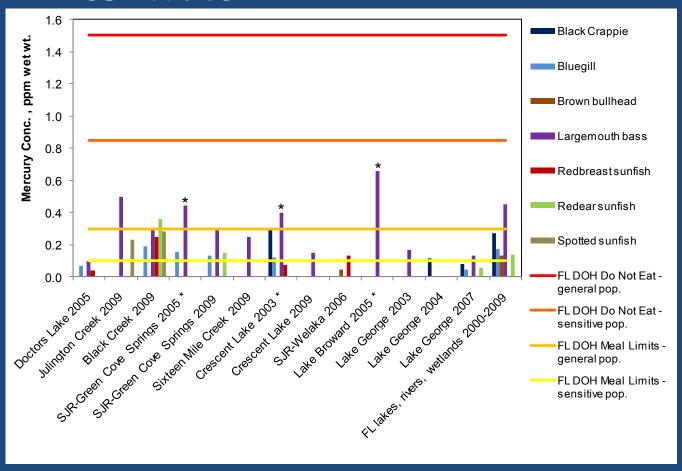
- Reasons for study
 - Sediments attract contaminants that persist, bioaccumulate, and are toxic.
 - Sediment organisms accumulate contaminants which then move up the food chain.
 - History of contamination is reflected in sediments.



Sediment Contaminants

Approach of study

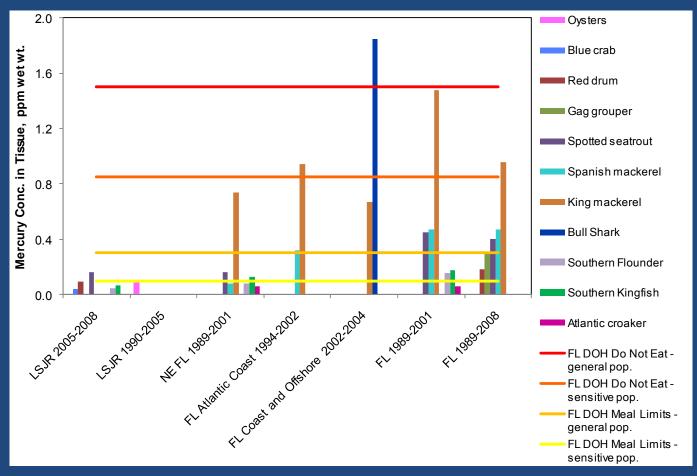
- Data reviewed for metals (8),
 PAHs (12), Total PCBs,
 organochlorine pesticides (10).
- Sources: SJRWMD, FDEP, Mote Marine Laboratories, Savannah Laboratories, Fish and Wildlife, NOAA.
- LSJR divided into four regions of similar salinity, habitat, land use
- Concentrations assessed for time trends and for toxicity effects



Sediment Contaminants

INDICATOR	STATUS	TREND
Polyaromatic Hydrocarbons (PAHs)	Unsatisfactory	NORTHERN LSJRB — Recovery from 1980s creosote contamination. SOUTHERN LSJRB — Urbanization may be increasing some types.
Metals	Unsatisfactory	Leveled off since 1990s.
Polychlorinated Biphenyls (PCBs)	Unsatisfactory (Western tributaries worst)	No significant decline in last 20 years.
Organochlorine Pesticides (OCPs)	Unsatisfactory (Western tributaries worst)	No significant decline in toxic effects over 20 years, but pesticides are slowly transforming.

Mercury in Fish and Shellfish


- Data FL DEP, FWRI, FL DOH
- Freshwater

Fish consumption information at http://www.doh.state.fl.us/floridafishadvice/8

Mercury in Fish and Shellfish

- Data FL DEP, FWRI, FL DOH
- Estuarine and Marine

Fish consumption information at http://www.doh.state.fl.us/floridafishadvice/

Events of Summer and Fall 2010 on the Lower St. Johns River

May through June of 2010

- Cyanobacteria blooms grew in the freshwater areas.

May to July

- Widespread reports of fish kills with damage to internal organs.

-Investigations ongoing

Smaller fish mortality event in Fall

- Attributed to the fungus *Aphanomyces invadans*.

Events of Summer and Fall 2010 on the Lower St. Johns River

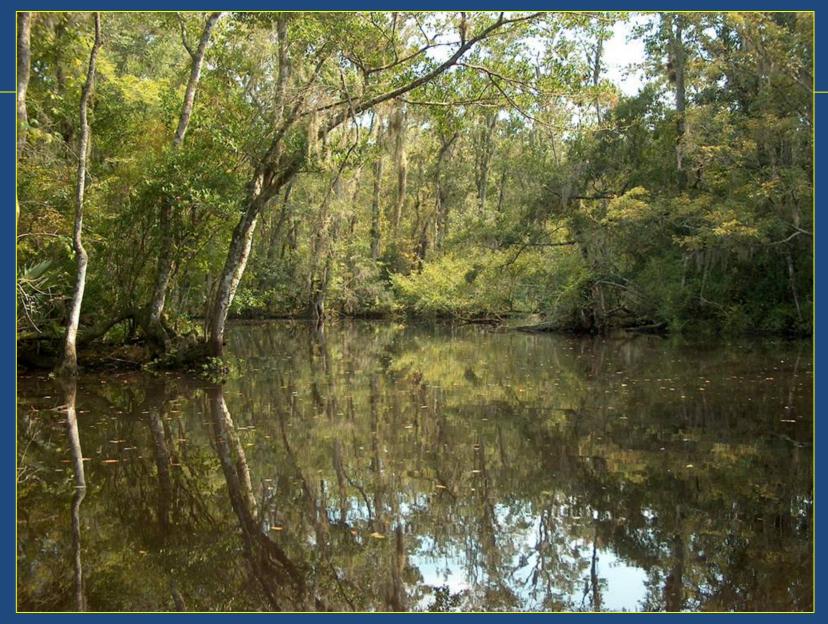
May through September

- Seventeen dead bottlenose dolphin were reported .

NOAA designated event as UME.

Major collaborative effort underway to better understand causes of dolphin mortality.

Mid-July


-Widespread reports of voluminous drifts of unusual white foam in approximately the same areas as the cyanobacteria blooms and the fish kills.

-Preliminary investigations indicate foam largely of salts similar to those in LSJR, as well biological compounds such as protein, carbohydrates, lipids, and nucleic acids.

The Future

• Start 2012 report and continue the report each year into the foreseeable future.

 Evaluate additional indicators & datasets to improve upon the report.

Thank you.